191 research outputs found

    Exosomal Protein Deficiencies: How Abnormal RNA Metabolism Results in Childhood-Onset Neurological Diseases.

    Get PDF
    Defects of RNA metabolism have been increasingly identified in various forms of inherited neurological diseases. Recently, abnormal RNA degradation due to mutations in human exosome subunit genes has been shown to cause complex childhood onset neurological presentations including spinal muscular atrophy, pontocerebellar hypoplasia and myelination deficiencies. This paper summarizes our current knowledge about the exosome in human neurological disease and provides some important insights into potential disease mechanisms

    Altered RNA metabolism due to a homozygous RBM7 mutation in a patient with spinal motor neuropathy.

    No full text
    The exosome complex is the most important RNA processing machinery within the cell. Mutations in its subunits EXOSC8 and EXOSC3 cause pontocerebellar hypoplasia, spinal muscular atrophy (SMA) and central nervous system demyelination. We present a patient with SMA-like phenotype carrying a homozygous mutation in RBM7-a subunit of the nuclear exosome targeting (NEXT) complex-which is known to bind and carry specific subtypes of coding and non-coding RNAs to the exosome. The NEXT complex with other protein complexes is responsible for the substrate specificity of the exosome. We performed RNA-sequencing (RNA-seq) analysis on primary fibroblasts of patients with mutations in EXOSC8 and RBM7 and gene knock-down experiments using zebrafish as a model system. RNA-seq analysis identified significantly altered expression of 62 transcripts shared by the two patient cell lines. Knock-down of rbm7, exosc8 and exosc3 in zebrafish showed a common pattern of defects in motor neurons and cerebellum. Our data indicate that impaired RNA metabolism may underlie the clinical phenotype by fine tuning gene expression which is essential for correct neuronal differentiation

    Diabetes insipidus and Guillain-Barré-like syndrome following CAR-T cell therapy: a case report

    Full text link
    Background: Immune effector cell-associated neurotoxicity syndrome (ICANS) is a common adverse event of CD19-directed chimeric antigen receptor (CAR) T cell therapy. Other neurological adverse events, however, have not methodically been described and studied. Furthermore, safety data on CAR-T cell therapy in patients with central nervous system (CNS) lymphoma remain limited. Main body: We here report occurrence of a Guillain-Barré-like syndrome (GBS) and central diabetes insipidus (cDI) following tisagenlecleucel therapy for relapsed high-grade lymphoma with CNS involvement. Both complications were refractory to standard treatment of ICANS. Weakness of respiratory muscles required mechanical ventilation and tracheostomy while cDI was treated with desmopressin substitution for several weeks. Muscle-nerve biopsy and nerve conduction studies confirmed an axonal pattern of nerve damage. T cell-rich infiltrates and detection of the CAR transgene in muscle-nerve sections imply a direct or indirect role of CAR-T cell-mediated inflammation. In line with current treatment guidelines for GBS, intravenous immunoglobulin was administered and gradual but incomplete recovery was observed over the course of several months. Conclusions: This case report highlights the risk of rare but severe neurological adverse events, such as acute GBS or cDI, in patients treated with CAR-T cells. It further underlines the importance of appropriate patient surveillance and systematic reporting of rare complications to eventually improve treatment

    Phenotypic convergence of Menkes and Wilson disease.

    Get PDF
    Menkes disease is an X-linked multisystem disorder with epilepsy, kinky hair, and neurodegeneration caused by mutations in the copper transporter ATP7A. Other ATP7A mutations have been linked to juvenile occipital horn syndrome and adult-onset hereditary motor neuropathy.1,2 About 5%-10% of the patients present with "atypical Menkes disease" characterized by longer survival, cerebellar ataxia, and developmental delay.2 The intracellular copper transport is regulated by 2 P type ATPase copper transporters ATP7A and ATP7B. These proteins are expressed in the trans-Golgi network that guides copper to intracellular compartments, and in copper excess, it relocates copper to the plasma membrane to pump it out from the cells.3ATP7B mutations cause Wilson disease with dystonia, ataxia, tremor, and abnormal copper accumulation in the brain, liver, and other organs.4

    Multifocal demyelinating motor neuropathy and hamartoma syndrome associated with a de novo PTEN mutation.

    Get PDF
    OBJECTIVE: To describe a patient with a multifocal demyelinating motor neuropathy with onset in childhood and a mutation in phosphatase and tensin homolog (PTEN), a tumor suppressor gene associated with inherited tumor susceptibility conditions, macrocephaly, autism, ataxia, tremor, and epilepsy. Functional implications of this protein have been investigated in Parkinson and Alzheimer diseases. METHODS: We performed whole-exome sequencing in the patient's genomic DNA validated by Sanger sequencing. Immunoblotting, in vitro enzymatic assay, and label-free shotgun proteomic profiling were performed in the patient's fibroblasts. RESULTS: The predominant clinical presentation of the patient was a childhood onset, asymmetric progressive multifocal motor neuropathy. In addition, he presented with macrocephaly, autism spectrum disorder, and skin hamartomas, considered as clinical criteria for PTEN-related hamartoma tumor syndrome. Extensive tumor screening did not detect any malignancies. We detected a novel de novo heterozygous c.269T>C, p.(Phe90Ser) PTEN variant, which was absent in both parents. The pathogenicity of the variant is supported by altered expression of several PTEN-associated proteins involved in tumorigenesis. Moreover, fibroblasts showed a defect in catalytic activity of PTEN against the secondary substrate, phosphatidylinositol 3,4-trisphosphate. In support of our findings, focal hypermyelination leading to peripheral neuropathy has been reported in PTEN-deficient mice. CONCLUSION: We describe a novel phenotype, PTEN-associated multifocal demyelinating motor neuropathy with a skin hamartoma syndrome. A similar mechanism may potentially underlie other forms of Charcot-Marie-Tooth disease with involvement of the phosphatidylinositol pathway

    Group evaluations as self-group distancing:Ingroup typicality moderates evaluative intergroup bias in stigmatized groups

    Get PDF
    Outgroup favoritism among members of stigmatized groups can be seen as a form of self-group distancing. We examined how intergroup evaluations in stigmatized groups vary as a function of ingroup typicality. In Studies 1 and 2, Black participants (N = 125,915;N = 766) more strongly preferred light-skinned or White relative to dark-skinned or Black individuals the lighter their own skin tone. In Study 3, overweight participants (N = 147,540) more strongly preferred normal-weight relative to overweight individuals the lower their own body weight. In Study 4, participants with disabilities (N = 35,058) more strongly preferred non-disabled relative to disabled individuals the less visible they judged their own disability. Relationships between ingroup typicality and intergroup evaluations were at least partially mediated by ingroup identification (Studies 2 and 3). A meta-analysis across studies yielded an average effect size ofr= .12. Furthermore, higher ingroup typicality was related to both ingroup and outgroup evaluations. We discuss ingroup typicality as an individual constraint to self-group distancing among stigmatized group members and its relation to intergroup evaluations
    corecore